翻訳と辞書 |
modular ocean model : ウィキペディア英語版 | modular ocean model The Modular Ocean Model (MOM) is a three-dimensional ocean circulation model designed primarily for studying the ocean climate system. The model is developed and supported primarily by researchers at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) in Princeton, USA. == Overview ==
MOM has traditionally been a level-coordinate ocean model, in which the ocean is divided into boxes whose bottoms are located at fixed depths. Such a representation makes it easy to solve the momentum equations and the well-mixed, weakly stratified layer known as the ocean mixed layer near the ocean surface. However, level coordinate models have problems when it comes to the representation of thin bottom boundary layers (Winton et al., 1998) and thick sea ice. Additionally, because mixing in the ocean interior is largely along lines of constant potential density rather than along lines of constant depth, mixing must be rotated relative to the coordinate grid- a process that can be computationally expensive. By contrast, in codes which represent the ocean in terms of constant-density layers (which represent the flow in the ocean interior much more faithfully)- representation of the ocean mixed layer becomes a challenge. MOM3, MOM4, and MOM5 are used as a code base for the ocean component of the GFDL coupled models used in the IPCC assessment reports, including the GFDL CM2.X physical climate model series and the ESM2M Earth System Model. Versions of MOM have been used in hundreds of scientific papers by authors around the world. MOM4 is used as the basis for the El Nino prediction system employed by the National Centers for Environmental Prediction.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「modular ocean model」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|